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Abstract 

This paper investigates the impact of stocks network topologies on the portfolio risk. We 

construct stocks directed network using the lead-lag relationships among stocks obtained from 

Vector Autoregressive (VAR) model. The portfolio variance of a naïve diversification rule and 

its asymptotic behavior for several stylized network structures are analyzed. We conclude that in 

an homogeneous and symmetric network, portfolio variance is lower than in a network structure 

where a few stocks assume more central positions. Moreover, we find that the impact of shocks 

in a centrality placed stocks of a star–like network on the short-term return-to-risk ratio is higher 

and longer-lasting compared to a more homogeneous structure. When analyzing long-term 

impact of shocks, we relate the return of portfolio to the Bonacich centrality of stocks in the 

portfolio’s network structure. Thereby, the higher is the centrality of the stock in the network 

structure, the higher would be the impact on portfolio from a shock to this stock.  

Keywords: Diversification, Network Theory, Vector Autoregressive Model 

 

 

 

 

a Abalfazl Zareei is at the Department of Business Administration, Universidad Carlos III de Madrid, c/ Madrid 126, 

28903 Getafe (Madrid, Spain) Email: azareei@emp.uc3m.es   

b Gustavo Peralta is at the Department of Research and Statistics at CNMV and Department of Business Administration 

at Universidad Carlos III de Madrid. Email: gperalta@cnmv.es   

  

mailto:gperalta@cnmv.es


2 

 

1. Introduction 

A well know proverb in finance states “do not put all of your eggs in the same basket” as a way to stress 

the benefit of diversification. The standard theory shows a decreasing and monotonic relationship 

between portfolio variance and the number of stocks in a portfolio. This negative relationship 

remains until the portfolio variance reaches to its asymptotic lower limits given by the mean 

correlation of returns, commonly associated to the systematic risk (Marín & Rubio 2011). In this 

paper, we specifically study how particular patterns of interconnection between stocks in a network 

structure affect the portfolio diversification benefits. 

The contribution of this paper is three-fold. First, we show theoretically how the dynamic 

interaction of stocks obtained from a Vector Autoregressive (VAR) model effect the portfolio 

variance. Second, we analyze how various stylized network structures would result in different 

portfolio variance and how this variance converges as we increase the number of stocks in these 

structures. The diversification rule in star-like network structures are found to digress from other 

type of structures signifying how asymmetry in the number of out-going links in a stocks network 

raises the portfolio variance. Third, by investigating the impact of shocks (where? In the center?) on 

short-term return-to-risk ratio in different network structures, we show that star-like network 

structures are more affected and these impact are found to be longer-lasting. 

We assume a dynamic structure for the generative return’s process captured by a Vector 

Autoregressive specification (VAR). Such specification allows us to account for lead-lag 

relationships between stock’s returns that we interpret as directed links in a network structure. To be 

more concrete, our directed and weighted stock network is composed of nodes representing stocks and the 

adjacency matrix is given by the coefficients matrix from the VAR(1) model. Thereby, a non-null 

and significant coefficient accounting for effect of stock j in the return’s process of stock i implies 

the existence of a link from node j to node i in the stock network. Our sample comprises return data 

for S&P500 starting from March 2004 and finishing in April 2013, thus covering pre-crisis, crisis and 

post-crisis periods. Since sparsity in the adjacency matrix is required for interpretability of the 

network approach, the VAR model is estimated using Elastic.Net algorithm. ((Zou & Hastie 2005) 

and (Zou & Zhang 2009)) 

The paper is divided into a theoretical and an empirical part. In the theoretical part, we provide a 

theoretical proof of the interactions between the portfolio variance and the stock network’s 
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structure by means of stylized architectures. Under this setting, we prove that the asymptotic limit of 

portfolio variance is equal for a disconnected network, fully connected network and a circle 

network1. However, as long as some stocks assume dominant positions into the network, like in a 

start network, the variance of the portfolio does not converge toward its presumed minimum but 

remains higher. More generally, for those network structures where the role taken by different stocks 

tend to be symmetric and homogeneous, the diversification argument remains valid. This result is 

attenuated when a few firms in the market takes more central positions since such lower bound is 

never reached. Thus, higher concentration in the out-degree distribution in the network structure 

prevents reaching the maximum diversification benefits. Additionally, we find the long-term impact 

of shocks on the central stocks (ranked by Bonacich centrality) to be more influencing the portfolio 

return comparing to low central stocks.  

The second part of the paper presents an empirical assessment of the stock network. Since the 

recent financial crisis took place approximately in the middle of our sample period, we characterize 

the state of the stock network in the prior, during and post crisis periods. We find that before and 

after crisis, the stocks network has more resemblance to the star network. Additionally, during the 

crisis period, the network structure becomes denser signifying higher number of interactions 

between stocks in concordance with the findings in Billio et al. (2012). 

From our point of view, the question addressed in this article is fundamental in order to get a 

deep understanding on the benefit of portfolio diversification. Our major proposition clearly states 

that the advantage of the portfolio diversification is constrained by the topology of the stock 

network. Our results are comparable with those in (Acemoglu et al. 2012) for the aggregate variance 

of the economy and thus embracing the idea that sometimes average measures uncovers the effects 

excreted by extremely influential nodes in the underlying network. 

The remainder of the paper is organized as follows. Section 2 presents a literature review 

regarding the current study. Section 3 defines primary steps in constructing the directed network. In 

section 4, we investigate various special directed network cases. Section 5 presents the impact of 

shocks to the stocks in the stock network on the portfolio returns and diversification benefits. 

Section 6 establishes the main results and section 7, presents the implication of findings in this 

paper. Finally, section 8 concludes and outlines future research lines. 

                                                           
1 In a disconnected network, each stock is affecting itself, and in a fully connected network each stock is connected with 
the rest of stocks in the market. In a circle network a node i is affected only by stock i-1 and affects stock i+1. 
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2. Literature Review 

The current paper is grounded in two different branches of literature. The first one corresponds 

to the study of stock markets through the lens of network theory. Second one covers the literature 

regarding the diversification. Next, we briefly describe their salient findings. 

The study of stock markets by means of network theory could be subdivided into three 

subranches. The first subsection is closely related to physics and it is basically concerned with the 

study of the topology of the related network. (Mantegna 1999) and (Bonanno et al. 2001) were 

among the first to apply the so-called Minimum Spanning Tree (MST) for the US Market with empirical 

correlation matrix of stock returns to uncover corresponding stock network.2 A similar approach 

was taken by (Vandewalle et al. 2001) also for the US market and by (Jung et al. 2006), (Garas & 

Argyrakis 2007) and (Huang et al. 2009) for the Korean, Greek and Chinese markets, respectively. 

Among their main results, it is interesting to highlight: i) how different branches of the stock 

network coincided to specific economics sectors, ii) power-law degree distributions and the 

correlation in the degrees of connected nodes are evidence of non-random arrangement of links. In 

(Onnela et al. 2003), a dynamic perspective of the same framework is undertaken allowing the 

authors to study the properties of the stock network through time. For authoritative summaries of 

the field see (Bonanno et al. 2004) and (Tumminello et al. 2010). 

A second subgroup of network-related articles comes from the econometric and financial 

literature using network approach to get new insights about systemic risk issues. In (Billio et al. 

2012), the authors build a directed Granger-causality network3 to capture the market 

interconnectedness. In this structure the links account for statistically significant pairwise lead-lag 

relationships between institution’s monthly returns. The concern about correlation in the tails of the 

return distribution results in the estimation of the so-called tail-risk network in (Hautsch et al. 2014a). 

This structure is a weighed-directed network in which the links between institutions are given by the 

interconnectedness of firm’s Value-at-Risk. Once this network is in place, the authors compute the 

realized systemic risk beta corresponding to the systemic relevance of financial firms in the market. In a 

                                                           
2 MST is a filtering technique that allows us to build a connected network of N stocks by joining together pairs of them 
in accordance to their pair correlation (in decreasing order) as long as no loops is formed in the structure. The resulting 
network is a tree network.  
3 The authors also measure connectedness through principal components but this approach is not the focus of the 
current paper. 
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closely related paper (Hautsch et al. 2014b), the authors adapt the tail-risk network framework to 

account for forecasting purpose of firm’s systemic relevance. Finally, (Diebold & Yılmaz 2014) 

measures the connectedness in a network in which the links between financial institutions are 

assigned in accordance to the variance decomposition of the volatility forecast error, giving rise to a 

volatility weighed-directed network. They show how the cycles of the total connectivity in the 

structure coincide with major disruptions in the US market. 

The final subgroup of network-based articles argues in favor of the network approach as a 

promising tool to enhance portfolio’s performances. (Pozzi et al. 2013) shows the improvements in 

financial performance of an investment strategy that assigns wealth toward stocks belonging to the 

periphery of stock network. This unconditional strategy is put into question in (Peralta and Zareei 

2014). In this paper, the authors propose a dynamic strategy, the so-called 𝜌-dependet strategy, 

accounting not only for the position of different stocks in the market but also for their performance 

in isolation. A final paper worth to mention is (Ozsoylev et al. 2014) where the informational 

diffusion process was studied for the Istanbul Stock Exchange. The major contribution of this 

article regards on the quantification of the early trading advantages and higher returns obtained by 

investors centrally placed in such informational network. 

The literature regarding financial diversification is enormous as the reader should expect. In what 

follows, the salient aspects are discussed. Among the earliest studies, (Samuelson 1967) clearly states 

the theoretical condition under which diversification among a fixed number of stocks pays off. He 

shows that positive diversification (a situation in which each assets enters in the portfolio with a 

positive weight) holds when stocks are independently distributed or when they present negative 

correlations. However, for the case of positive correlations, positive diversification does not 

necessarily holds. From a more empirical perspective, (Evans & Archer 1968) focus on the 

relationship between portfolio dispersion and the number of stocks in a randomly selected and 

equally weighted portfolio. They show a stable and predictable association which is characterized by 

a rapidly decreasing and asymptotic function, with the asymptote approximation of the systematic 

risk. They also raise some doubts about the economic justification of portfolio sizes beyond 10 

stocks without a proper marginal cost-benefit analysis. (Mao 1970) provides theoretical support for 

this finding arguing that relatively few stocks are required to capture the bulk of the benefit of 

diversification (17 under reasonable conditions). 
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The paper of (Evans & Archer 1968) has raised many critics from the research community about 

the number of stocks needed to obtain the maximum level of diversification. Among the first group 

of critics (Elton & Gruber 1977) and (Bird & Tippett 1986) argues that the parametric relationship 

in (Evans & Archer 1968) is misspecified. Both articles provide the exact equations connecting 

portfolio risk and its size showing that there is still room for risk reduction well beyond the 10 stock 

proposed by (Evans & Archer 1968). A second group of critics focus on the nature of the systematic 

risk and particularly on the beta coefficient. The so-called beta effect, say the positive association 

between portfolio systematic risk (beta) and idiosyncratic risk (calculated as the variance of the 

residuals from the market model), is documented in (Klemkosky & Martin 1975). Under such 

condition, high beta portfolios requires larger number of securities to achieve approximately the 

same level of diversification than low beta ones. The non-stationarity of the beta coefficient is 

considered in (Chen & Keown 1981) by providing efficient estimates for both, systematic and 

idiosyncratic risk under consideration. In a similar fashion (Campbell et al. 2001) reports a 

decreasing correlation between the returns of individual stocks and the market. This phenomena 

results in an increment in the idiosyncratic risk and a rise in the number of stocks needed to obtain a 

given level of portfolio diversification. This evidence is not consistent with the more recent data 

including the last financial crisis showing an increase in the market correlation among security types 

and among international markets (James et al. 2012). 

It is worth mentioning two more studies embarrassing a different methodology to assess the 

benefit of diversification. (Statman 1987) relies in a Security Market Line approach finding that well-

diversified portfolios must include at least 30 stocks and at least 40 if no leverage is employed. The 

shortfall risk approach is put into practice in (Domian et al. 2007). Two main conclusions come out 

from this study are: i) for long-term investors who wish to outperform Treasure bonds, a portfolio 

with more than 150 stocks is required and ii) greater risk reduction is archived by increasing such 

number than by spreading the holdings across industries. 

3. Formation of Directed Stock Network  

In general terms, a network is a pair of sets 𝜑 = {𝑉, 𝐸}, where 𝑉 = {1,2, … , 𝑛} is the set of 

nodes and 𝐸 the set of links connecting pairs of nodes. If there is a link from node i to node j, 

(𝑖, 𝑗) ∈ 𝐸. A convenient way to arrange the information contained in 𝐸 is by means of the so-called 

adjacency matrix 𝐴𝑛×𝑛 = [𝐴𝑖𝑗]𝑛×𝑛. When 𝐴𝑖𝑗 ≠ 0, there is a relationship between node i and node 
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j. The network is said to be undirected if 𝐴 = 𝐴𝑇, therefore (𝑖, 𝑗) ∈ 𝐸 also implies (𝑗, 𝑖) ∈ 𝐸. Note 

that for undirected network no-causal relationship is attached to the links and they are visually 

represented as a line, (𝑗 − 𝑖). On the other hand, if 𝐴 ≠ 𝐴𝑇 , the network is said to be directed and 

𝐴𝑖𝑗 entails a causal relationship from node 𝑗 to node 𝑖 which does not necessarily implies the 

reverse. In this case, the links are visually represented as arrows, (𝑗 → 𝑖). Furthermore, if 𝐴𝑖𝑗 ∈

{0,1}, 𝜑 is said to be an un-weighted network and when 𝐴𝑖𝑗 ∈ ℝ, each link in the network carries 

information about interaction intensity between nodes leading to a weighted network4. 

Suppose an investor selects a basket of 𝑛 stocks whose returns follow a Gaussian Vector 

Autoregressive model of order 1, VAR(1), as in equation (1). 

𝑟𝑡+1 = 𝑎 + 𝐵𝑟𝑡 + 𝑢𝑡+1 (1) 

Where 𝑟𝑡 is the 𝑛 dimensional vector of stock returns in period t, 𝑎 is the vector of intercepts 

allowing for non-zero expected returns and 𝐵 = [𝑏𝑖𝑗] is an 𝑛𝑥𝑛 matrix where the element 𝑏𝑖𝑗 

represents the impact of stock j in period t on stock i in period t+1. Finally, 𝑢𝑡+1 is a Gaussian white 

noise process with zero mean vector and positive definite covariance matrix 𝛴𝑢 = [𝜎𝑢,𝑖𝑗].  

VAR model has been used before to capture the dynamical dependency between stocks - See 

DeMiguel et al. (2014), Eum and Shim (1989) and Chordia and Swaminathan (2000)5. DeMiguel et 

al. (2014) exploit the individual stock returns serial dependency via VAR model for the purpose of 

achieving better out-of-sample performance. They develop arbitrage and mean-variance strategies 

based on VAR model and find these strategies to perform well when the transaction costs are below 

ten basis points. Eum and Shim (1989) apply VAR model to daily return of nine market indices in 

order to investigate the interactions between stock markets. Chordia and Swaminathan (2000), 

investigating the impact of trading volume on lead-lag patterns in stock returns, apply VAR model 

to two portfolios, one with high-trading-volume stocks and other with low-trading-volume stocks. 

In an informational efficient market, there should not exist any dynamical pattern between stock 

returns, however, as it is stated in Billio et al (2012), in the presence of market frictions (e.g. value-at-

risk constraints, transaction costs, borrowing constraints, costs of gathering and processing 

                                                           
4 The reader is referred to (Newman 2010) and (Jackson 2010) for a comprehensive treatment of the field. 
5 Particularly, in strategic asset allocation, VAR models proved to be a useful tool. We refer to Campbell and Viceira 
(1999, 2002), Campbell, Chan and Viceira (2003), and Barberis (2000). 
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information, institutional restrictions on shortsales), we may find causal relations among returns, 

even though not necessarily exploitable.  

We define two different but related stock market networks, 𝛷𝑊 = {𝑁, 𝐵} and 𝛷𝑈 = {𝑁, 𝐸}. In 

both cases, 𝑁 accounts for the set of stocks in the investor’s portfolio. 𝛷𝑊 is a directed and 

weighted network whose adjacency matrix is given by 𝐵. Thereby, a weighted link from stock j to 

stock i exists as long as 𝑏𝑖𝑗 is different from zero. 𝛷𝑈 is the un-weighted version of ΦW with 

adjacency matrix 𝐸 = [𝑒𝑖𝑗] determined as follows: 

𝑒𝑖𝑗 = {
1, 𝑏𝑖𝑗 ≠ 0

0, 𝑏𝑖𝑗 = 0
 (2) 

 

As an example, in figure 1 we provide the network of 100 highly capitalized stocks listed in 

NYSE in the period 1965 to 20066. In this network, the nodes are the stocks and the links accounts 

to the pairwise lead-lag relationship among them. By construction, those links are directed giving rise 

to type of links: those pointing toward a node (in-links) and those pointing from that node (out-

links). The darker the node, the higher is its out-degree.  

 

 

 

                                                           
6 For a detailed explanation of the VAR estimation, the reader is referred to section 6. 

Figure 1. Directed network for open-close daily returns of 100 highly 

capitalized stocks from 1995 to 2006 
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4. Portfolio diversification and network topology 

We assume that the return process in (1) is stationary an as a consequence, each eigenvalue of 𝐵 

has modulus less than 1. Under this condition, it is said that the process is well-behaved with mean 

vector and covariance matrix given as follows7: 

𝐸(𝑟𝑡) = 𝜇𝑟 = (𝐼𝑁 − 𝐵)−1𝑎 (3) 

Σ𝑟 = ∑ 𝐵𝑖Σ𝑢𝐵𝑖′
∞

𝑖=0

 (4) 

Due to the imposition of stationarity, 𝐵𝑖 converges to zero rapidly with increasing i.8 Therefore, a 

convenient approximation of equation (4) is given by equation (5) where the term 𝐵𝑖Σ𝑢𝐵𝑖′
is 

negligible for 𝑖 ≥ 2  

Σ̃𝑟 = Σ𝑢 + 𝐵Σ𝑢𝐵′ (5) 

 

The variance of a portfolio composes by each of the stocks in 𝑁 with weight vector, 𝒘, is as 

follows: 

σ𝑝
2 = 𝒘′Σ𝑢𝒘 + 𝒘′𝐵Σ𝑢𝐵′𝒘 (6) 

  

σ𝑝
2 = ∑ ∑ 𝑤𝑖𝑤𝑗𝜎𝑢,𝑖𝑗

𝑛

𝑗=1

+

𝑛

𝑖=1

∑ ∑ 𝑤𝑖𝑤𝑗(∑ ∑ 𝐵𝑖𝑘𝐵𝑗𝑙𝜎𝑢,𝑘𝑙

𝑛

𝑙=1

𝑛

𝑘=1

)

𝑛

𝑗=1

𝑛

𝑖=1

 (7) 

 

The right-hand side of equation (7) is composed of two terms, the first one corresponding to the 

traditional portfolio variance and the second one associated to the dynamical part of the return 

process which also captures the impact of the network topology 𝛷𝑊. Specifically, the Σ𝑢 in the 

VAR model is not diagonal. It represents the unconditional covariance between returns and 

                                                           
7 We refer to (Lütkepohl 2007) for a detailed explanation. 
8 In order to demonstrate how fast it converges to zero, we provide a numerical example in appendix A. 
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thereby, we can verify the traditional notion of systematic and idiosyncratic risk of the portfolio 

from the first term in equation (7).   

In order to verify how different patterns in the network structure impact the portfolio variance, 

figure 2 demonstrates the full list of network motifs (specific patterns of interactions) that 

fundamentally determines σ𝑝
2 . 

 

 

 

 

The detailed explanation of the impact of each motif depicted in figure 2 on the portfolio 

variance is given in Appendix B. In total, the weight invested in the stocks with in-going links 

(vulnerable stocks), and the individual variance and covariance between the stocks with out-going 

links (threatening stocks) are the major determinant of portfolio variance. This is predictable as any 

variation in a vulnerable stocks comes from the threat exerted by threatening stocks.  

4.1. Portfolio diversification and special cases of network topology 

In this section, we consider various special network topologies and investigate the portfolio 

variance under these structures. Throughout this section, we impose simplifying assumptions to 

make our analysis more tractable. We consider a naïve investor that allocates his wealth equally 

among assets in the investor’s portfolio set. As a consequence, the (column) vector of portfolio’s 

Figure 2. Specific network motifs influencing portfolio variance 
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weights is 𝒘 =
1

𝑛
𝟏 where 𝟏 is a column vector of ones. Additionally, with the aim to isolate any 

other possible effect different from the stock network topology, it assumed that  𝜎𝑢,𝑖𝑗 = 𝜎𝑢
2  for 𝑖 =

𝑗 and 𝜎𝑢,𝑖𝑗 = 𝜌𝜎𝑢
2  for 𝑖 ≠ 𝑗 where 𝜌 accounts for the equal pair correlation of return. Finally, 𝑏𝑖𝑗 =

𝑏 < 1 for ∀𝑖𝑗. When all these sets of simplifying assumptions are in place for a particular formula, 

we say that formula is under SSA. 

When there is no dynamical structure in the return process, 𝐵 is equal to the null matrix and as a 

consequence the expression (7) for the portfolio variances lead to its traditional formulation 

(Markowitz 1952). Therefore,  

σ𝑝
2 = 𝒘′Σ𝑢𝒘 = ∑ ∑ 𝑤𝑖𝑤𝑗𝜎𝑢,𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 (8) 

 

Consistent with (Mao 1970), equation (8) under SSA is written as in (9) stressing the fact that 

portfolio variance is a function of its size. 

σ𝑝
2(𝑛) = [

1

𝑛
+ 𝜌 (1 −

1

𝑛
)] 𝜎𝑢

2 (9) 

 

Let us consider two extreme cases, i) none diversification where 𝑛 = 1 leading to σ𝑝
2(1) = 𝜎𝑢

2 

and ii) extreme diversification in which 𝑛 = ∞ (when every stock in the market is included into the 

investment basket) where σ𝑝
2(∞) = 𝜌𝜎𝑢

2. Note that since σ𝑝
2(1) > σ𝑝

2(∞) there exist diversification 

benefit. 

When there is a dynamical structure, the variance of portfolio, in comparison with the no-

dynamical case (see equation (8)), is increased by the element 𝒘′𝐵Σ𝑢𝐵′𝒘 which in turn captures the 

effect of the stock network topology 𝛷𝑊. Next, we assume that the set of stocks included in the 

investment opportunity set form stylized network topologies that are carefully selected to gain new 

insights about their impact upon portfolio variance. 

Case I: Disconnected Network 
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The first case under analysis assumes each stock is affected only by itself as it is depicted in figure 

3 and thus there is no dynamic interaction beyond their own autocorrelation process. 

 

 

In this case, the matrix 𝐵 is diagonal and since there is not cross interaction 𝑏𝑖𝑗 = 0 𝑓𝑜𝑟 𝑖 ≠ 𝑗; 

therefore the variance of portfolio is as follows: 

σ𝑝
2 = ∑ ∑ 𝑤𝑖𝑤𝑗𝜎𝑢,𝑖𝑗

𝑛

𝑗=1

+ (

𝑛

𝑖=1

∑(𝑤𝑖)2𝑏𝑖𝑖
2𝜎𝑢,𝑖

2

𝑛

𝑖=1

+ ∑ ∑ 𝑤𝑘𝑤𝑙𝑏𝑘𝑘𝑏𝑙𝑙𝜎𝑢,𝑙𝑘

𝑛

𝑙=1 𝑘≠𝑙

𝑛

𝑘=1

) (10) 

The first term of expression (9) is the usual portfolio variance and the second and third terms 

represent the impact from network topology. In the second and third terms, the weights, variance 

and covariance of each of the stocks in the investment set affect the portfolio variance. With regard 

to variance, the impact is positive for all of stocks. Under SSA, as long as |𝑏| < 1, stationarity holds. 

In this case the variance of the portfolio is simplified to: 

σ𝑝
2(𝑛) = [

1

𝑛
+ 𝜌 (1 −

1

𝑛
)] [1 + 𝑏2]𝜎𝑢

2 (11) 

 

As before, two extreme cases regarding the value of 𝑛 are mentioned. For 𝑛 = 1, the portfolio 

variance is σ𝑝
2(1) = [1 + 𝑏2]𝜎𝑢

2 and for the case of maximal diversification, 𝑛 = ∞, σ𝑝
2(∞) =

[1 + 𝑏2]𝜌𝜎𝑢
2. 

Case II: Star Network 

Case (I) assumes an extreme situation of none interaction in the stock network. Another 

interesting is when there is one stock influencing all the other stocks in the portfolio. 

Figure 3. Special case where each stock is threatening only itself 
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In this case, 𝐵 is a zero matrix expect for the column i which is composed by elements equal to 

𝑏𝑖𝑗 for 𝑖 = 1,2, . . , 𝑛. Accordingly, the variance of the portfolio is given by expression (12). 

Considering the second term related to the network topology, we see that variance of the central 

stock, stock 1, and also the weights allocated to stocks in the periphery of the network, 𝑤𝑖 for 𝑖 =

{2,3, … , 𝑛}, are relevant for determining σ𝑝
2 .  

σ𝑝
2 = ∑ ∑ 𝑤𝑖𝑤𝑗𝜎𝑢,𝑖𝑗

𝑁

𝑗=1

+

𝑁

𝑖=1

∑ ∑ 𝑤𝑘𝑤𝑙𝑏𝑘1𝑏𝑙1𝜎𝑢,1
2

𝑁

𝑙=2

𝑁

𝑘=2

 (12) 

 

When SSA is imposed, matrix 𝐵 has all its entries equal to zero except for the components of 

column i which are equal to 𝑏. For matrix 𝐵, all its eigenvalues are zero except for one which is 

equal to 𝑏. Therefore, as long as |𝑏| < 1, stationarity holds. In such situation the portfolio is  

σ𝑝
2(𝑛) = [

1

𝑛
+ 𝜌 (1 −

1

𝑛
) + 𝑏2] 𝜎𝑢

2 (13) 

 

When 𝑛 = 1, the return-to-risk ratio is σ𝑝
2(1) = (1 + 𝑏2)𝜎𝑢

2 and for the case of maximal 

diversification characterized by 𝑛 = ∞, σ𝑝
2(∞) = (𝜌 + 𝑏2)𝜎𝑢

2. 

 

Case III: Inverse Star Network 

Figure 4. Star Network 
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The inverse of case II is presented in figure 5 in which the center of the network receives impacts 

from other stocks in the investment set. 

  

 

In this case, 𝐵 is a zero matrix expect for the row i which is composed of elements equal to 𝑏𝑖𝑗 

for 𝑖 = 1,2, . . , 𝑛. The corresponding portfolio variance is given by equation (14). Focusing on the 

second term of equation (14), we see that the only weight involved in the formula is the one from 

the central stock. However, all of the correlations between pairs of peripheral stocks are crucial 

determinents in equation (14).  

σ𝑝
2 = ∑ ∑ 𝑤𝑖𝑤𝑗𝜎𝑢,𝑖𝑗

𝑁

𝑗=1

+

𝑁

𝑖=1

(𝑤1)2
∑ ∑ 𝑏1𝑘𝑏1𝑙𝜎𝑢,𝑘𝑙

𝑁

𝑙=2

 

𝑁

𝑘=2

 (14) 

 

The structure of eigenvalues for matrix 𝐵 is exactly the same as in the star network because these 

matrices are the transpose of each other. In this case, 𝐵 is a zero matrix expect for the row i that is 

composed of elements equal to 𝑏. Therefore, as long as |𝑏| < 1, stationarity holds. In this case, the 

variance of the portfolio is  

σ𝑝
2(𝑛) = [

1

𝑛
+ 𝜌 (1 −

1

𝑛
)] [1 + 𝑏2]𝜎𝑢

2 (15) 

 

An interesting result comes when one compares expressions (14) and (11). It turns out that the 

portfolio variance is exactly the same in these two specifications; however, this is not true for the 

Figure 5. Inverse Star Network 
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star network case. This highlights the importance of the concentration in the degrees pointing from 

a particular node (out-degree) in comparison to the concentration of the degrees pointing to a 

particular node (in-degree). It is clear that a highly out-degrees concentration in the stock network 

undermines the benefits of diversification. 

Case IV: Circle Network 

Another interesting case to study regards to the circle network which is depicted in figure 6. In 

this symmetric structure stock 𝑖 affects stock 𝑖 + 1 and it is being affected by stock 𝑖 − 1. 

  

 

The elements of matrix 𝐵 are zero except for those located in first diagonal below the main 

diagonal and for the one located in the upper right corner. The portfolio variance in this case is 

given by equation (16). Note that the variance of portfolio due to the network structure is 

determined by the weights and covariance of consecutive stocks. 

 

σ𝑝
2 = ∑ ∑ 𝑤𝑖𝑤𝑗𝜎𝑢,𝑖𝑗

𝑁

𝑗=1

+ ∑ ∑ 𝑤𝑖𝑤𝑗𝑏𝑖(𝑖+1)𝑏(𝑗)(𝑗+1)𝜎𝑢,(𝑖+1)(𝑗+1)  

𝑁

𝑗=1

 

𝑁

𝑖=1

𝑁

𝑖=1

 (16) 

 

Under SSA, the statitionary is preserved as long as |𝑏| < 1. We see that the variance is exactly 

equal to the one from the disconnected network.  

Figure 6. Circle Network 
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σ𝑝
2(𝑛) = [

1

𝑛
+ 𝜌 (1 −

1

𝑛
)] [1 + 𝑏2]𝜎𝑢

2 (17) 

 

Case V: Fully Connected Network 

Finally, the case in which the network is fully connected is depicted in figure 7 for the case of 

𝑛 = 4. In this situation each stock is connected with the rest of the stocks in the investment set. 

 

 

This situation is somehow different since in order to preserve stationary under SSA, the 

parameter 𝑏 must be sufficiently small in relation to 𝑛. Therefore, it is assumed that 𝑏 =
1

𝑛
𝛿 for 0 <

𝛿 < 1. It could be proved that the eigenvalues of 𝐵 are all equal to zero expect for the largest which 

is equal to 𝛿. The portfolio variance is as follows: 

σ𝑝
2(𝑛) = [

1

𝑛
+ 𝜌 (1 −

1

𝑛
)] [1 + 𝛿2]𝜎𝑢

2 (18) 

 

As before, two extreme cases regarding 𝑛 are mentioned. For 𝑛 = 1, the portfolio variance is 

σ𝑝
2(1) = [1 + 𝛿2]𝜎𝑢

2. Note that when 𝑛 = 1, then 𝑏 = 𝛿. For the case of maximal diversification 

characterized by 𝑛 = ∞, σ𝑝
2(∞) = [1 + 𝛿2]𝜌𝜎𝑢

2. The reader should note that expression (18) 

presents the same analytical structure than those prevailing for the disconnected network and it is 

identical as long as 𝑏 = 𝛿. 

4.2. Numerical experiment 

Figure 7. Fully Connected Network 
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Next, we investigate the convergence of portfolio variance for increasing number of stocks under 

different network topologies under consider SSAFor comparison purpose, figure 8 provides the 

behavior of the portfolio variance considering the cases of No-Dynamical, Disconnected Network 

and Star Network for different portfolio sizes. 9 

 

 

Figure 8 plots four graphs depending on the values of the two fundamental parameters, 

specifically 𝜌 ∈ {−0.04,0.04} and 𝑏 ∈ {0.4,0.6}. We consider positive values for 𝑏 and it is 

expected for the negative values to lead to the same behavior of portfolio variance convergance. 

Additionally, since 𝜌 is the mean correlation among 𝑛 nodes, such parameter is not bounded from 

above but it is bounded from below since the minimum negative correlation coefficient among the 

                                                           
9 Since portfolio variance of the circle network and inverse star network has the same expression as the disconnected 
network, their corresponding portfolio variance is not presented.   

Figure 8. Portfolio variance for different topologies 
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set of 𝑛 variables is given by − 1 (𝑛 − 1)⁄ . Since the maximum portfolio size in figure 8 is 20, this 

explains the values given to 𝜌.10  

There are three aspects that are worth to highlight. First, diversification benefits are evident given 

the negative slope shown by  σ𝑝
2  in any of the network configurations and for any parameter 

specification. Thereby, larger portfolio size provides lower portfolio variance disregarding the 

network topology in place. Second, there is a clear ordering in terms of  σ𝑝
2  for any given level of 

portfolio size that prevails irrespectively of the parameter specification. The worst performance is 

assigned to the star network and the best one corresponds to the case of no dynamics structure. 

Between these two extremes, the rest of the network configurations are located. Finally, we also 

observe the influence of quantity of 𝑏. From figure 8, it could be seen that for larger values of 𝑏, the 

portfolio variance of the disconnected network becomes closer to that of the star network and far 

away for the no-dynamical case. 

In order to get further insights on the effects that stock network has on the diversification 

benefits, the portfolio variance elasticity 𝜉(𝑛) is defined as follows 

𝜉(𝑛) =
𝜕σ𝑝

2(𝑛)

𝜕𝑛

𝑛

σ𝑝
2(𝑛)

 (19) 

 

Expression (20) and (21) provide the formulas for such elasticity for the disconnected network 

and star network, respectively.11 

𝜉𝐷(𝑛) =
𝜌 − 1

𝜌(𝑛 − 1) + 1
 (20) 

𝜉𝑆(𝑛) =
𝜌 − 1

𝜌(𝑛 − 1) + 𝑏2𝑛 + 1
 (21) 

 

Figure 9 shows the behavior of diversification elasticity for the same specification of parameters 

as before.  

                                                           
10 Note that in the limiting case of 𝑛 → ∞, 𝜌 should not be lower than zero. 
11 The cases of no dynamics, circle and inverse star networks show the same elasticity given by equation (20).  
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Consistent with the figure 8, four aspects should be mentioned. First, 𝜉 is negative stressing the 

benefit of diversification for any parameter specification and network configuration. Second, the 𝜉 

corresponding to star network is always lower (in absolute terms) than for the rest of the structures 

which relates to the existing potential of diversification embedded in different network architectures. 

Third, for 𝜌 > 0, 𝜉 shows a positive slope representing the decreasing marginal benefit of 

diversification. However, for 𝜌 < 0, this behavior is preserved for the star network but this is not 

the case for the rest of the structures showing increasing benefit of diversification. Finally, higher 𝑏 

increases the difference between the benefit of diversification among the two types of structures.  

As a summary it could be said that large concentration on the effects that a stock imposes to the 

rest of the system undermines the benefits of diversification, not only in term of its asymptotic limit 

Figure 9. Variance elasticity for different topologies 
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but also for intermediate size portfolios. Additionally, this effect combined with negative mean 

correlation drastically changes the behavior of the portfolio variance for different values of 𝑛. 

Thereby, special attention should be put on the evolution of the network structures as a way to 

monitor the potential advantage of diversification. 

 

5. Portfolio diversification and the impact of shocks in different structures 

Until now, we have constructed a directed network for the stocks using a VAR model and 

accordingly, we discuss how various network topologies function with regard to portfolio 

diversification. In this section, we aim to investigate the impact of shocks on different stocks in 

various network topologies on portfolio return and accordingly on diversification benefits.  

The portfolio return for period t, assuming weight vector 𝒘, is computed as follows making use 

of the MA representation of a VAR process: 

𝑅𝑡
𝑃 = 𝒘′𝜇𝑟 + 𝒘′[∑ 𝐵𝑖𝑢𝑡−𝑖

∞

𝑖=0

] (22) 

The portfolio return with respect to a one unit shock on stock j, k periods before is calculated as 

follows:  

𝜕𝑅𝑡
𝑃

𝜕𝑢𝑡−𝑘,𝑗
= ∑ 𝑤𝑖[𝐵𝑘]𝑖𝑗

𝑁

𝑖=1

 (23) 

Where [𝐵𝑘]𝑖𝑗 corresponds to the element in row i and column j in matrix 𝐵𝑘. The impact of 

shocks k periods before is transmitted through matrix 𝐵 and as we increase k, we expect that 

stationarity assumption would drive this matrix to zero. Thereby, a shock on a stock far times before 

would have a slight impact on the portfolio return at time t. Moreover, the weights allocated to 

stocks is affected by stock j are also essential for determining the impact of the shock on the 

portfolio return.  

In order to analyze the short-term influence of shocks on the diversification benefits, we 

introduce 𝜃 as the ratio between portfolio return and its standard deviation. We fixed the standard 
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deviation to be the square root of long-term portfolio variance. Portfolio variance for different 

structures are computed in the preceding section. The impact of shocks to 𝜃 is driven by short-term 

portfolio returns. In this regard, the changes in 𝜃 with respect to a unit shock k periods before on 

stock j is computed as follows: 

𝜕𝜃

𝜕𝑢𝑡−𝑘,𝑗
=

1

𝜎𝑃
×

𝜕𝑅𝑡
𝑃

𝜕𝑢𝑡−𝑘,𝑗
 (24) 

Where 𝜎𝑃 is the long-term portfolio variance. With regard to the effect of shocks in portfolio 

return through network topologies, we should analyze the elements of matrix 𝐵𝑘 for increasing 

values of k.  

For the star network, considering SSA to hold, the change in the value of 𝜃 in response to one 

unit shock to the central stock would be: 

𝜕𝜃

𝜕𝑢𝑡−𝑘,1
=

𝑏2(𝑘−1)

𝜎𝑃
 (25) 

Since |𝑏| < 1, as we increase k, the response to a shock decreases. Moreover, the impact of 

shocks on stocks in the peripheries on 𝜃 is zero since there is no path for this shock to be 

transmitted. The value computed in equation (25) is the change in 𝜃 as we shock the stock in the 

center by one unit in the star network. In case of negative shocks, the higher is the shock, the higher 

would be the reduction of the reduction in 𝜃  

In the case of disconnected network, the change in 𝜃, under SSA, as we shock stock j is 

computed as follows:    

𝜕𝜃

𝜕𝑢𝑡−𝑘,1
=

1

𝑛

𝑏2(𝑘−1)

𝜎𝑃
 (26) 

 

We observe that the impact of the shock to any stock on the ratio of return to risk is lower and as 

we increase the number of stocks in this type of network, the impact decreases.  

For the full network, the change in 𝜃, under SSA, is computed as follows: 
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𝜕𝜃

𝜕𝑢𝑡−𝑘,1
=

3𝑘−1𝑏2(𝑘−1)

𝜎𝑃
 (27) 

 

Since in the full network, all the stocks are connected to each other, we expect a shock to be 

transmitted rapidly and remains for a longer period. But it should be noted that the value of 𝑏 for a 

full network should be low enough in order for the stationarity condition to hold. Additionally, as 

we will show in the empirical part, the higher is the number of outgoing and ingoing links, the lower 

would be the corresponding weights assigned to these links. 

In order to demonstrate how the shocks impact the portfolio returns in short-term in different 

structures, we provide a numerical example. We consider three structures: disconnected network, 

star network and full network. Assuming SSA, we consider 𝑏 to be equal to 0.4 in star and 

disconnected networks and equal to 0.04 in the full network structure. We consider 𝜌 to be equal to 

0.4 and variance to be 1 in all of the structures. We assume 100 stocks. The impact of a one unit 

shocks on stock 1 on portfolio return for 5 periods is presented in figure 10.  

 

 

The impact of a shock on the central stock in the star network last longer than that in full and 

disconnected network. Moreover, in the disconnected network, the shock does not have much 

impact on the portfolio return and with regard to full network, the impact of shocks disappear 

rapidly.  

Figure 10. Change in theta for a one unit shock on a stock in the portfolio 
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In total, we can argue that in the network structures where the distribution of out-going links is 

fat-talied, the impact of shocks on portfolio returns and consequently, on the portfolio 

diversification benefits is higher and long-lasting. In addition, to obtain a portfolio with lower short-

term negative movement in relation to shocks in the stocks, it is advisable to construct the portfolio 

with a disconnected network structure.  

5.1. Overall impact of shocks on portfolio performance  

In order to analyze the overall impact of shocks, we employ the framework provided by 

Acemoglu et al. (2015). This framework helps us verify how the network interactions function in the 

event of shocks. Their methodology characterize the notion of systemic risk via network linkages in 

portfolio context. 

In order to connect our model to the reduced form model of Acemoglu et al. (2015), we need to 

define (i) an interaction function, (ii) an interaction network and (iii) an aggregation function. In our 

context, we consider the interaction function to be a linear function of the form 𝑓(𝑥) = 𝑥 and our 

interaction network defined by the directed network 𝐵. Moreover, the portfolio return would be our 

aggregation function. Thereby, the overall impact of a shock on stock 𝑖, on the return of the 

portfolio would be as follows: 

𝜕𝑅𝑃

𝜕𝑢𝑖
= 𝑤𝑖(𝐼𝑁 − 𝐵)−1𝑒𝑖 

    Where 𝑒𝑖 is an i-th unit matrix with 𝑁 × 1 dimension. The element (𝐼𝑁 − 𝐵)−1 corresponds to 

Bonacich centrality in network theory context. Bonacich centrality is higher for the stocks that either 

interact with a high number of stocks or with the stocks that are themselves highly central.  

Accordingly, if the stocks are highly central, a shock to them would have higher impact on the 

return of the portfolio than low central ones. Moreover, the overall impact of shocks is also related 

to the amount of wealth we invest on the stocks. In total, using Bonacich centrality we can measure 

how systemic a stock is in a portfolio.  
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6. Empirical analysis 

This section provides an empirical application of the concepts developed in the last sections. We 

rely on Datastream to account for adjusted returns of the 100 most capitalized constituents of the 

S&P-500 index. The period under analysis starts from 2004-11-02 until 2014-09-30. Since the goal is 

to characterize the evolution of the stock network, the dataset is divided in three sub-periods: Pre-

Crisis from 2004-11-01 until 2008-02-29, Crisis from 2008-03-03 until 2009-03-31 and Post-Crisis 

from 2009-04-01 until 2014-09-30. 

In order to estimate the VAR model in equation (1), we employ elastic net method of Zou and 

Hastie (2005). Tibshirani (1996) proposed LASSO algorithm that performs both parameter 

shrinkage and variable selection by including an 𝑙1 penalty term. On the other hand, ridge regression 

performs similar to LASSO by minimizing sum of squared residuals subject to a penalty term. Ridge 

regression considers 𝑙2 penalty term which exclude straightforward variable selection as in LASSO. 

The problem with LASSO is that it randomly selects a predictor from a group of correlated 

predictors. Elastic net combines both penalty terms in LASSO and ridge regression. In this way, it 

performs variable selection by shrinking parameters to zero and it is capable of distinguishing 

between predictors even when they are correlated12.  

In the first step, we apply elastic net to the returns in whole period and draw the histogram of 

weights in matrix B in order to see how the weights are distributed. The weights distribution is 

presented in figure 11. We observe that the weights are distributed around zero. This is expectable as 

elastic net tends to shrink the parameter estimation towards zero.   

                                                           
12 Elastic net is explained in details in Appendix C 
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In the next step, we investigate the relation between the number of connections a stock has in the 

network and the mean of the absolute values of the weights attached to links, stock strength. The 

results are presented in figure 12 where x-axis plots the connectivity of each stock and the y-axis the 

corresponding strength. A clear positive relationship is found for the whole period and for each of 

the subperiod under analysis except for the out degree case in the pre-crisis scenario.. Therefore, we 

can conclude that those stocks centrally placed in the network due to large number connectivity also 

shows larger individual effect upon the connected stocks 

 

  

 

 

 

 

 

Figure 11. Weight distribution in serial dependence matrix B 
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In the last sections, we observed a clear distinction between star network and the other network 

topologies. Thus, a fundamental aspect to measure is the extent to which the empirical network 

structure resembles a star-like the star network which could be done by mean of the concept of 

network centralization. The idea of network centralization is discussed in (Freeman 1978) and it is 

captured by 𝐶𝑥 as follows: 

Figure 12. Number of in- and out-going edges and weight distribution 
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𝐶𝑥 =
∑ [𝐶𝑥(𝑝∗) − 𝐶𝑥(𝑝𝑖)]𝑛

𝑖=1

max ∑ [𝐶𝑥(𝑝∗) − 𝐶𝑥(𝑝𝑖)]𝑛
𝑖=1

 (28) 

 

where 𝐶𝑥(𝑝𝑖) is the centrality of node i, 𝐶𝑥(𝑝∗) is the largest node centrality in the network and 

max ∑ [𝐶𝑥(𝑝∗) − 𝐶𝑥(𝑝𝑖)]𝑛
𝑖=1  is the maximum possible sum of differences in node centrality for a 

network of size n. Naturally, in our case 𝐶𝑥(𝑝∗) is equal to the centrality of node i in the star 

network. Note that 0 < 𝐶𝑥 < 1 being 0 in case when every node is equally important and being 1 

when the underlying network is the star network. 

We still need to define precisely the centrality measures to be used in equation (28). Since our 

stock network is directed, it turns out that a particular node could be central in  affecting or being 

affected. We rely on HITS algorithm (Kleinberg 1999) to quantify the threatening centrality and 

vulnerability centrality13. Note that from previous analysis, we now that the out-going links are 

relevant to diversification performance; thereby, the relevant centrality measure in the threatening 

centrality (see appendix D). Therefore the relevant centralization of the network in this case is as 

follows: 

𝐶𝑥 =
∑ [𝐶𝑥(𝑝∗) − 𝐶𝑥(𝑝𝑖)]𝑛

𝑖=1

𝑛 − 1
 (29) 

 

We calculate this measure along with other measures of network characteristics for the datasets in 

different periods and the results are provided in table 1. We can verify the change in network 

structure during the crisis period. We see that the network becomes more connected as we go 

through the crisis. This is in concordance with the findings by Billio et al. (2012) where they show 

that the recent financial crisis lead to the network structure of stocks to become highly 

interconnected. Looking at the centralization measure, we see that during the crisis, the network is 

less like a star network in comparison to the network from before and after crisis periods. 

                                                           
13 The full description of these centrality measures is presented in Appendix D.  
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In the following, we compute the threatening and vulnerability centralities at industrial levels 

presented in our datasets as it is described in appendix D. The results are shown in figure 13. 

Looking at the results for the whole dataset, it is interestingly to note that financial industry is highly 

threatening and additionally vulnerable. Moreover, we can also see that banks were highly vulnerable 

before the crisis and after the crisis, they become both highly threatening and vulnerable.  

 

Whole Pre Crisis Crisis Post Crisis

Basics

Nodes 100 100 100 100

Links 5958 5345 6069 6401

Density 0.60 0.54 0.61 0.65

Mean Degree 59.58 53.45 60.69 64.01

Distance

Diameter 2 2 2 2

Mean Distance 1.16 1.21 1.15 1.13

Components

Out 0.00 0.00 0.00 0.00

Strongly 0.84 0.72 1.00 0.79

In 0.16 0.28 0.00 0.21

Patterns of Connectivity

Transitivity 0.87 0.84 0.88 0.90

Reciprocity 0.60 0.53 0.61 0.64

Assortativity -0.28 -0.34 -0.28 -0.27

Centralization 0.32 0.28 0.24 0.29

* Measures corresponding to the unweithed version of the Stock Network

Table 1

Networks thorugth time
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7. Implication  

We provide insights on how the topology structure of serial dependence of stocks would impact the 

portfolio variance and moreover, on how shocks would impact the portfolio return in short-term in 

different network topologies. Our findings have several implications. First, portfolio managers are 

able to build portfolios considering not only the variance-covariance matrix but also the network 

structure of stocks. In this way, they can increase the diversification benefits in their portfolios. 

Second, portfolio managers can build up portfolios that are less prone to sudden changes or shocks 

Figure 13. Threatening and vulnerability degrees for industries 
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in the stocks by investing in portfolios toward disconnected or full network structure and away from 

star network structure. 

Third, since we consider a general notion of portfolio for our analysis, the considered portfolios 

can represent a general stock exchange index where all of the stocks in that market are included in 

the portfolio. In this regard, we can analyze the impact of network structure on this market 

portfolio. Our calculations on the relation between network structure and portfolio variance can be 

extended to quantify the relationship between expected shortfall and network structure.  We can 

compute the expected shortfall for the market assuming the market to be a portfolio of stocks. 

Expected shortfall has been considered as a measure of systemic risk (Acharya et al., 2010). 

Expected shortfall of the market is computed as the expected loss in the index conditional on this 

loss being greater than C (where C represents 𝛼 level of portfolio return distribution). Subsequently, 

since the portfolio return follows a normal distribution, the expected shortfall for the portfolio 

would be as follows: 

𝐸𝑆𝑡
𝑅𝑃(𝛼) = 𝑤′(𝐼𝑁 − 𝐵)−1𝑎 +

𝜑(Φ−1(𝛼))

1 − 𝛼
× (𝑤′Σ𝑢𝑤 + 𝑤′𝐵1Σ𝑢𝐵1′

𝑤) (30) 

 

Where 𝜑(𝑥) is the density of standard normal distribution. Accordingly, assuming no constants 

in the VAR model, we can conclude that there is a direct relationship between expected shortfall of 

the index and variance of the portfolio. 

𝐸𝑆𝑡
𝑅𝑃(𝛼)~(𝑤′Σ𝑢𝑤 + 𝑤′𝐵Σ𝑢𝐵′𝑤) 

 
(31) 

Thereby, the higher the variance, the higher would be the expected shortfall of the market index. 

We can conclude that the star network structure have a higher variance level and thereby, a higher 

expected shortfall level and additionally, in the short-run, the impact of a shock is both higher and 

preservative than other structures. In this regard, a stock exchange that depicts a star network 

structure caries higher systemic risk than a full network or an individual network structure.  
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8. Conclusion 

In this paper, we construct a directed network of stocks by estimating the one period serial 

dependency matrix via a VAR(1) model. We compare the portfolio variance across several special 

network topologies for a naïve diversification strategy and we find that larger asymmetry in the 

number of out-going links across stocks leads to lower diversification benefits. We find that for 

individual, circle and full network structures, the portfolio variance acts in the same manner 

asymptotically while in the star network, the portfolio variance does not capture the minimum 

possible values in other network structures.  

Moreover, we investigate the impact of shocks on the short-term diversification benefits and we 

find that for the star network structure, the impact of a shock on the central stock is higher and 

longer-lasting.  

In the empirical part, we analyze the portfolio returns during the 2007/2008 crisis period. We 

find that after crisis, the network structure is digressing toward a star network structure and during 

the crisis, the stock network structure is denser. Moreover, we also find that the higher is the 

number of connections for a stock, the larger would be the mean absolute value of the weights 

attached to the links  

For the future research, we propose analyzing numerically the impact of the directed network 

structure on the stability of the market. Considering various special cases as we include in our paper, 

we can verify how the market, considered as a portfolio index, would react to shocks in different 

parts of the network. 
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Appendix A: Convergance of serial dependence matrix under stationarity condition 

In order to demonstrate how rapidly the powers of matrix 𝐵 converge to zero, we consider 10 

highest capitalized stocks and calculate the matrix 𝐵. Next, we compute the sum of absolute values 

of elements for different powers of matrix 𝐵 up to the tenth power. The results are presented in the 

following figure: 

  

 

Figure A1: Summation of absolute values for different powers of matrix 𝐵 

 

Appendix B: Influence of each motif on portfolio variance 

In case (a), a stock is affecting by itself. This contributes to portfolio variance with the following 

expression: (𝑤𝑖)
2𝐵𝑖𝑖

2𝜎𝑖
2 where 𝜎𝑖

2 is the variance of stock 𝑖. In case (b) in figure 2, two different 

stocks affect two separate stocks contributing to the portfolio variances as follows:  

𝑤𝑘𝑤𝑙𝐵𝑘𝑖𝐵𝑙𝑗𝜎𝑖𝑗 + (𝑤𝑘)2𝐵𝑘𝑖𝐵𝑘𝑖𝜎𝑖
2 + (𝑤𝑙)

2𝐵𝑙𝑗𝐵𝑙𝑗𝜎𝑗
2                 (A1) 

 Intuitively, the weights invested in stocks with in-going links and also the covariance between out-

going stocks and their individual variance are the determinant of influence on portfolio variance.  
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In case (c), stock 𝑖 is affecting both stocks 𝑙 and 𝑘. The impact of this interaction on portfolios 

variance is  

𝑤𝑘𝑤𝑙𝐵𝑘𝑖𝐵𝑙𝑖𝜎𝑖
2 + (𝑤𝑘)2𝐵𝑘𝑖𝐵𝑘𝑖𝜎𝑖

2 + (𝑤𝑙)
2𝐵𝑙𝑖𝐵𝑙𝑖𝜎𝑖

2                (A2) 

Under this pattern of connectivity, the variance of the initiator stock plays the important role. This is 

straightforward as we can see that any perturbation in the prices of both stocks 𝑘 and 𝑙 comes from 

changes in return of the stock that is threatening them.  

In case (d), both stocks are impacting each other. The influence of this dynamic structure is: 

𝑤𝑖𝑤𝑘𝐵𝑘𝑖𝐵𝑖𝑘𝜎𝑖𝑘 + (𝑤𝑘)2𝐵𝑘𝑖𝐵𝑘𝑖𝜎𝑖
2 + (𝑤𝑖)

2𝐵𝑖𝑘𝐵𝑖𝑘𝜎𝑘
2                (A3) 

The individual variance of both stocks and also their covariance is determinant in quantifying the 

portfolio variance.  

In case (e), two stocks 𝑖 and 𝑗 are affecting one stock 𝑘. The notion signifying this interaction in 

portfolio’s variance is as follows:  

(𝑤𝑘)2𝐵𝑘𝑖𝐵𝑘𝑗𝜎𝑖𝑗 + (𝑤𝑘)2𝐵𝑘𝑖𝐵𝑘𝑖𝜎𝑖
2 + (𝑤𝑘)2𝐵𝑘𝑗𝐵𝑘𝑗𝜎𝑗

2                (A4) 

The weight allocated to stock k and also the variance and covariance of out-going stocks are the 

major players in this motif.  

Finally, in case (f), the underlying portfolio variance impact would be: 

                   (𝑤𝑘)2𝐵𝑘𝑖𝐵𝑘𝑖𝜎𝑖
2 + (𝑤𝑗)2𝐵𝑗𝑘𝐵𝑗𝑘𝜎𝑘

2                               (A5) 

 

Appendix C: Elastic net estimation procedure 

The equation for stock i in the VAR(1) model is represented as follows: 

                    𝑟𝑡+1
𝑖 = 𝑎𝑖 + ∑ 𝐵𝑖𝑗𝑟𝑡

𝑗𝑁
𝑗=1 + 𝑢𝑡+1

𝑖                                       (A6) 

The values for row i of matrix B is estimated as follows: 
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min
𝐵𝑖𝑗

[∑(𝑟𝑡+1
𝑖 − ∑ 𝐵𝑖𝑗𝑟𝑡

𝑗

𝑁

𝑗=1

)

2

+ 𝜆1 ∑|𝐵𝑖𝑗| + 𝜆2 ∑ 𝐵𝑖𝑗
2

𝑁

𝑗=1

𝑁

𝑗=1

𝑇

𝑡=1

] (A7) 

 

By estimating the above expression, we compute the row i of matrix B. To find out all the elements 

of matrix B, we estimatate via elastic net for each row by changing the dependent stocks. The 

regularization parameters 𝜆1 and 𝜆2 refer to the l1 and l2 penalty terms, respectively. These two 

values are estimated using 10-fold cross validation.  

 

Appendix D: Threatening and vulnerability centrality 

Following (Kleinberg 1999) HITS algorithm is applied. In a directed network the direction of the 

links is relevant. Thus, each node has in principle to roles that can be captured by the centrality of its 

position in such roles, vulnerability centrality, 𝑣𝑖 , and threatening centrality 𝑡𝑖. An stock becomes a 

high threat to the system as long as it points to many stock that are highly vulnerable. On the other 

hand, a stock is highly vulnerable as long as it is pointed to by many threatening stocks. In this 

approach, the vulnerability centrality is proportional to the sum of the threatening centralities of the 

nodes that point to it 

𝑣𝑖 = 𝛼𝑣 ∑ 𝑒𝑖𝑗𝑡𝑗

𝑗

 (A8) 

 

where 𝛼𝑣 is a constant. Which in matrix notation is given by 

𝑣 = 𝛼𝑣𝐸𝑡 (A9) 

 

Similarly, the threatening centrality is proportional to the sum of the vulnerability centrality of the 

nodes it points to 
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𝑡𝑖 = 𝛼𝑡 ∑ 𝑒𝑗𝑖𝑣𝑗

𝑗

 (A10) 

Where 𝛼𝑡 is another constant. In matrix notation  

𝑡 = 𝛼𝑡𝐸𝑇𝑣 (A11) 

Combining (25) and (27) we get 

𝑣 = 𝛼𝐸𝐸𝑇𝑣 (A12) 

𝑡 = 𝛼𝐸𝑇𝐸𝑡 (A13) 

Where 𝛼 = 𝛼𝑣𝛼𝑡. Thus, the vulnerability centrality and the threatening centrality are respectively 

given by eigenvectors of 𝐸𝐸𝑇 and 𝐸𝑇𝐸 corresponding to the largest eigenvalues. Note the such 

matrices have the same eigenvalues. Note that each stocks has 2 characteristics, vulnerable and 

threatening. 

For the case of star network, it could be proved that threatening centrality for the center is one and 

zero for the rest of the stocks. However, the vulnerability centrality is the same value for each 

element (including the center) when the network has loop or is the same number for all the element 

expect the center that assumes zero vulnerability when there is no loop 

 


